Science from the MeV Gamma Ray Sky

Reshmi Mukherjee Barnard College, Columbia University, NY

The need

- A sensitive survey of the γ-ray sky between 100 keV and 100 MeV

Energy range & challenges

- Energy range 300 keV to ~100 MeV
- "Compton regime" -- notoriously difficult & challenging
- Requires an efficient instrument with an excellent background subtraction
- Last instrument to operate in this range: COMPTEL
- Neither Fermi-LAT nor AGILE are optimized for observations below ~200 MeV or for polarization sensitivity.

Freytag, Handbook of Accel. Phys. & Eng. (1971)

Compton Imaging

Sensitivities - The MeV "Gap"

Talk Outline

- Science motivation
- Review highlights from "MeV" missions
- Synergy with VHE and keV regime
- Wish list for a future medium-energy instrument

Science goals for the "medium energy"

- Explosive nucleosynthesis: a close look at core-collapse and thermonuclear supernovae
- γ -ray lines (e.g. 511 keV, 70 MeV, + + +)
- Large number of soft γ -ray sources in the Galactic plane, yet to be discovered
- Contribution of soft γ-ray sources to the medium-energy Galactic diffuse emission
- The laws of physics around neutron stars and black holes
- Measurements of transient phenomena
- Spatially resolve variation between electron dominated and hadron dominated processes in the 70-200 MeV range.. Origin of cosmic rays?

from AstroMeV

Origin of the highest energy cosmic rays?

What is the origin of the highest energy cosmic rays?

- >100 year old mystery!
- Enormous E range
- Mostly charged particles
- E density ~ 1 eV/cm³

Highest energy cosmic rays: clear evidence of particles above $E > 10^{20}$ eV.

~85% protons, ~12% He nuclei, ~1% heavier nuclei, ~1% e and e+.

Talk Outline

- Science motivation
- Review highlights from "MeV" missions
- Synergy with VHE and keV regime
- Wish list for a future medium-energy instrument

Skymaps: The INTEGRAL Sky

Skymaps: The COMPTEL Sky

Galactic Sources: COMPTEL

Pulsars: 1 – 30 MeV

MW spectra of known γ-ray pulsar at the time of CGRO

Nuclear processes: Gamma-ray lines

Some astrophysical objects such as solar flares, stars, novae, supernovae may produce γ -ray lines due to transitions between nuclear energy levels:

- Deuteron production: $E_{\gamma} = 2.2 \text{ MeV}$
- Radioactive decay:


```
<sup>44</sup>Ti (1.16 MeV)

<sup>56,57</sup>Ni, <sup>56,57</sup>Co (0.12, 0.85, 1.24 MeV),

<sup>26</sup>Al (1.81 MeV)

<sup>60</sup>Fe (0.06, 1.17, 1.33 MeV)

<sup>7</sup>Be (0.49 MeV), <sup>16</sup>O*(6.13MeV)

<sup>26</sup>Mg* (1.81MeV), <sup>12</sup>C* (4.48 MeV)
```

COMPTEL all-sky image of ²⁶Al γ rays

-1.8 MeV γ -ray emission produced by the radioactive decay of 26 Al, tracing regions with massive young stars throughout the Milky Way

INTEGRAL all-sky image of ²⁶Al γ rays

Bouchet, Jourdain & Roques, 2015

- 10 years of INTEGRAL/SPI observations. Spatial resolution of 6°
- Main features previously seen with COMPTEL are confirmed, emission is essentially confined in the inner Galaxy

Particle Physics processes: γ-ray lines

• e⁺, e⁻ annihillation: 511 keV emission from the GC region is still a mystery **OSSE, Dixon, Purcell** peak at 511 keV continuum 0 to 511 keV . Knödlseder - CESR - September 2005 Galactic Longitude (degrees) ntion: Man of the distribution of positrons towards the center of the Milky Way Galaxy, including he newly discovered antimatter "cloud". The brightest feature corresponds to the nucleus -need large FOV - deep Galactic survey - sub degree angular resolution **INTEGRAL Skymap**

What are the main sources of positrons?

SN 2014J: Thermonuclear Explosion

Reshmi Mukherjee

SN 2014J: Surprise Result

- -Physics of bright Type-1a SN not fully understood
- Results from INTEGRAL and NuSTAR challenge prevailing explosion model for type Ia supernovae

- The ⁵⁶Ni is commonly believed to be buried deeply in the expanding supernova cloud
- γ -ray lines from 56 Ni decay at 158 and 812 keV detected earlier than expected (\sim 20 d after explosion)

Particle Physics processes: γ-ray lines

• Cosmic Rays undergo hadronic (p – p) interactions in the Interstellar medium (ISM), leading to π^0 production

$$\pi_0 \rightarrow \gamma + \gamma$$

- Measuring γ rays helps trace gas distribution in the galaxy
- Signature spectrum of photons from π_0 decay: pion "bump" at ~70 MeV

SNRs: Neutral pion decay?

Low-energy part of the gamma-ray spectrum is critical for interpreting signature of cosmic ray pion decay

Cosmic rays?

■ A good spectral measurement at < 100 MeV will help clinch π^0 spectrum without doubt, and resolve between gamma ray models

Spatial resolution of SNRs

Spatially integrated spectral energy distribution of Tycho

VERITAS image of Tycho SNR, a possible "pevatron"

Need detailed probe of morphology and coordination with GeV & TeV instruments

Reshmi Mukherjee

Blazar Physics

- Active galaxies in the MeV domain:
 - Formation and evolution of AGN
 - Origin of the extragalactic
 MeV γ-ray background
- Blazar spectral energy distributions:
 - leptonic vs hadronic models?
 - origin of UHE cosmic rays & neutrinos?

Active Galactic Nuclei

- γ-ray emission for FSRQs and LBLs typically peak in the "MeV" band
- Missing blazar population in the "MeV" band → MeV γ-ray background?
- Where is the Compton peak in the various classes? What is the luminosity?

Blazars detected by EGRET & Fermi-LAT

- Bolometric luminosity of blazar dominated by its γ-ray output.
- What is the correlation between γ-ray flux and the bulk Lorentz factor of the emission region along the jet.

γ-ray data from <u>EGRET & COM</u>PTEL

PKS 0528+134 with XMM & Fermi-LAT

Lack of observational data in the keV - MeV band makes modeling interpretations challenging.

Active Galactic Nuclei

- Emission in FSRQs is dominated by a Compton component peaking in the ~100s keV to ~100s MeV
- Where is the peak of the HE bump in the SED?
- Can blazars can contribute to the γ-ray background above 50 keV?

Simultaneous MW Studies of AGN

NuStar Monitoring of Mrk 501 with coordinated observations from Radio to TeV energies

- First detailed characterization of the synchrotron peak with Swift and NuSTAR
- Terrific example of truly simultaneous data
- Crucial information missing between the NuSTAR observations and the beginning of Fermi band

Crucial information missing between the NuSTAR observations and the beginning of Fermi band

AGN – Broadband spectra

- Not much has changed since CGRO/EGRET days
- Missing "MeV" data

Wehrle et al. 1998

"MeV" Blazars

High-redshift radio loud quasars (z > 2)

- FSRQs → most powerful blazars, emission dominated by Compton component ~ 100 keV to ~ 100 MeV
- Emission at >10¹⁶ Hz dominated by the jet, while the steep optical-to-UV continua ~ thermal emission from the accretion disk.

Origin of Cosmic MeV γ-ray Background?

- Can FSRQs explain the entire CXB emission for energies above 100 keV?
- IC peak is in the MeV regime
- What is the evolution of luminous FSRQs?

Cosmic MeV γ-ray Background

-MeV background likely due to different source classes: SN Ia, AGN, Star forming galaxies

Cosmic MeV γ-ray Background

- MeV γ-ray measurements difficult. MeV sky not fully investigated
- Expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude
- Need large numbers of FSRQ detections
- Can future MeV instruments clearly disentangle the origin of the MeV γ -ray background through measurement of the angular power spectrum?

Gamma-ray Polarization

Why are polarization measurements important?

- Polarization measurement in blazar Gamma-ray polarization can distinguish between emission processes such as synchrotron radiation and other gamma-ray production mechanisms. Are hadrons accelerated in blazar jets?
- Polarized hard X-ray emission detected by space borne instruments, e.g. RHESSI, INTEGRAL, and GAP. Such polarization should extend into the gamma-ray range, given the same basic emission processes
- γ-ray polarimetry remains a frontier in high-energy studies.

(see e.g. Hunter 2013)

Gamma-ray Polarization

Why are polarization measurements important?

Crab Nebula / Pulsar: High degree of polarization (46 ± 10 % at 0.1 – 1 MeV; 72 % at 200 – 800 keV); PA consistent with pulsar jet axis (Dean et al. 2008; Forot et al. 2008)

→ Highly ordered B-field structure and particle outflow.

(From Boettcher's talk, GammaSIG2015)

NTEGRAL Picture of the Month September 2008

Gamma-ray Polarization - GRBs

- GRB061122: linear polarization measured in the γ -ray energy band (250–800 keV) during the brightest part of the prompt emission.
- Polarization measurements can shed new light on the strength and scale of magnetic fields, as well as on the radiative mechanisms at work during the GRB prompt emission phase.

Multimessenger Astronomy

- Quick response to transients (ms)
- Wide FOV &
- multi-messenger astronomy (CTA, LIGO & IceCube)

Talk Outline

- Science motivation
- Review highlights from "MeV" missions
- Synergy with VHE and keV regime
- Wish list for a future medium-energy instrument

Unexplored Energy Range: 0.3 MeV - 100 MeV

A science wish list:

- Science at other wavebands impeded by comparable sensitivity in MeV regime → Need to focus on the MeV band
- Improvement in gamma-ray sensitivity (order of magnitude)
- **Exceptional angular resolution for \gamma rays in the range (~0.2° or better at 1 GeV)**
- Very large field of view (2.5 sr)
- Polarization capability for both steady and transient sources
- Fast trigger & alert capability for transient sources

Scientific topics: medium-energy γ-ray domain

Theme 1: Radioactivity and antimatter

Radioactive emission from type la supernovae

Core-collapse supernovae and radioactivity

44-Ti line emission from young supernova remnants

Gamma-ray lines from long-lived radioactive isotopes

Radioactive emission from classical novae

511 keV emission from positron annihilation

Theme 5: Sun and Earth science

The sun in the MeV domain

Terrestrial gamma-ray flashes

Theme 2: Cosmic-ray physics

MeV astronomy of the high-energy interstellar medium

Nuclear gamma-ray lines from low-energy cosmic rays

Gamma-ray emission from particle acceleration in supernova remnants and superbubbles

Continuum emission from particle acceleration in novae

Cosmic rays in star-forming galaxies

The Galactic center in the MeV range

Theme 3: Black holes, neutron stars and pulsar wind nebulae

Active galactic nuclei in the MeV domain

Gamma-ray binaries

Gamma-ray line emission from X-ray binaries

MeV emission of black hole binaries

Gamma-ray emission from magnetars and rotation-powered pulsars

Pulsar wind nebulae in the MeV domain

Gamma-ray bursts

Theme 4: Fundamental physics and cosmology

Dark matter annihilation and decay

Explore the limits of modern physics

AstroMeV: http://astromev.eu/

Future possibilities: MeV γ-ray domain

EXTRAS Reshmi Mukherjee